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With the invention of lasers,  there has been an increasing interest in the 

possibility of developing a submillimeter maser. 

the particular conditions that are necessary to successfully operate a solid- 

state submillimeter maser ,  and second the measured properties of the host lat- 

tice and the cavities that could be used for such a development. 

This paper discusses first 

Consider first the usual condition for oscillation of any laser  in an iso- 

1, 2 tropic medium. 

0.00395 QFsth (%- Ns - Nt)> 1, 
EAfs t gs 

in which, in  Gaussian units, 

Q = cavity Q 

Fst = oscillator strength between the signal and the terminal 

energy levels 

h = wavelength 

Afst  = line width of the transition 

gt, gs = statistical weights of the terminal and the signal energy 

levels 

Ns,Nt 

E = dielectric constant of the medium. 

= population per unit volume of the signal and terminal states 

The transition between the signal and the terminal levels is assumed to have 

a Gaussian line shape. 

measurable resonant absorption coefficient, Kst, by 

The quantity, Fst/Afst, is related to the experimentally 
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where Nt is the population density of the terminal level at thermal equilibrium. 

Therefore, 

( 3 )  

to simplify 

(4) 

one can define a resonance absorption Q, Qabs, at h = (Es-Et)/h as 

the condition for oscillation to 
c 

Equation (4) shows clearly the difficulties that one must overcome in 

developing a submillimeter maser, namely (a) to obtain a high cavity Q, (b) to 

obtain a low Qabs, and (c)  to obtain a reasonable population inversion ratio. 

However, one finds very little information of the kind mentioned above in this 

frequency range. At The Ohio State University, we have made detailed measure- 

ments of various host lattices in  order to predict the achievable Q of a Fabry- 

Perot cavity in this far-infra-red/submillimeter region. 

process of measuring the Kst and the Qabs of the Stark-split levels of various 

active materials. But we have not yet attempted to achieve the populationinversion. 

We a r e  now in the 

0 

t 
Qabs has the physical meaning as the ratio of the "2nf x stored energy" to 

the "energy dissipated per second through the resonance absorption processes(1 

in the laser  material, 
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Let us consider the achievable Q of the Fabry-Perot cavity in this f re -  

quency range. Clearly, " ' 
- 1 =  -t- 1 t- 1 1 
Q Qref Qe Qd 

where 

and 

2lLjT 
Q, = cavity Q due to the dielectric loss = - 

a1 

Qref = cavity Q due to the reflectivity of the end surface = - 2s dJF 
1 (1-R) , 

2sd& ' 'd Qd = cavity Q due to the diffraction loss = - , 

in which a is the absorption coefficient of the host lattice; d is the separation 

of the Fabry-Perot surfaces; R is the power reflection coefficient of the end 

surface; and 6d is the percentage power loss per transit as calculated by Fox 

and Li, and Boyd and Gordon. 

In the visible region, QE is usually so large that it can be neglected. 

However, many crystals have such strong lattice absorption bands in the far- 

infra-red that one of the most important steps in developing a submillimeter 

maser  is to measure the dielectric properties of laser  materials in order to 

determine Q,. Figures 1 to 6 show the refractive indices, the absorption 

coefficients, and the percent transmission of CaWO,, Al, 03, MgO, and 

CaFz measured on the Ohio State University submillimeter spectrometer, 

and by others. These data represent the measured results from many 

samples and many data points, a t  300°K and 90°K. The refractive indices 

5 s  6 

7 9  8 

were calculated from the measured "channeled spectra" of the power trans- 

mitted through the various samples. The absorption coefficients were 
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calculated f rom the point by point transmission data after deducting the r e -  

flection losses. 

Grids of gold (width 0.010 mm, spacing 0.025 mm) deposited on sheet Mylar 

Low temperature dewars were used to cool the samples. 

were used as polarizers. The detailed descriptions of the experiments a r e  

given elsewhere. " 

Q, would be limited to 2 x 10, and 2 x lo' in CaWO, and MgO, respectively, 

at 300°K and to approximately 2 x lo' and 6 x 10' at 90°K, at frequencies of 

20 cm" o r  higher. A-, 0 3  has similar properties. Lower values of Q, a r e  

expected from CaF, . 
tained from 300°K to 90°K, it appears that considerably higher values of Q, 

F rom these data, we can deduce immediately that the 

From the improvement of absorption coefficient ob- 

are achievable if  the entire cavity is cooled down to the liquid helium temperature. 

On the other hand, the Qref can .be made to exceed lo5 at submillimeter 

wavelengths, for d 2  5 cm, because of the high reflectivity, R, available by 

using metal grids o r  solid metal with holes a s  the end reflector of the Fabray- 

Perot  cavity. The Qd may become a limiting factor on cavity Q, depending 9,10 

where a is the radius of the Fabry-Perot end surface.'* * a' JF 
upon the ratio 

According to the calculation made by Fox and Li, we can see that the cavity Q 

of the TEMoo mode a submillimeter Fabry-Perot planar cavity would be 

limited to lo* with d 2 5 cm at frequencies lower than 17 cm-' where a' JF 
dA 

is smaller than 3 .  On the other hand, the confocal cavity would yield a 

considerably higher Qd. 

Figure 7 shows a comparison of these Q factors in a typical laser  cavity 

(TEM,, mode) using MgO o r  CaWO, as the sample material. From this 
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figure we can conclude that the Q factor of a submillimeter plane-Fabry-Perot 

cavity at the liquid helium temperature would probably be limited to 10' by the 

host lattice absorption. 

It follows that the successful development of a submillimeter maser  

must depend upon the selection of an  active material that would have a 

Qabs = lo3 (i.e., Kst 2 1 cm 

of 10% o r  better. 

transition does not occur will probably not make a good submillimeter maser  

material. 

ported by Tinkham and others, Kst  of this order of magnitude should be 

available in many materials. 

achievement of a reasonable population inversion ratio. 

- 1  ) o r  better, with a population inversion ratio 

It also means that any material in which an electric dipole 

From the existing submillimeter spectroscopic data in solids re -  

The major obstacle would appear to be the 
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FREOUENCY (cm') 
REFRACTIVE INDEX FOR CoWO, 

Fig. 1. Refractive index for CaW04. 
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Fig. 2. Absorption coefficient of C a W 0 4 .  
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FREQUENCY (cm') 

Fig. 3. Refractive index of MgO. 

FREQUENCY (C m-') 

Fig. 4. Absorption coefficient of MgO. 
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Fig. 5. Transmission of CaFz . 
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Fig. 7 .  A comparison of Q factors in a typical laser cavity. 
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